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Abstract—A novel self-adaptive chaotic artificial bee colony 
algorithm based on Tent map (STOC-ABC) is proposed to 
enhance the global convergence and the population diversity. In 
the STOC-ABC, Tent chaotic opposition-based learning 
initialization method is presented to diversify the initial 
individuals and obtain good initial solutions. Furthermore, the 
self-adaptive Tent chaotic searching is implemented at the zones 
nearby individual optimum solution to help the artificial bee 
colony (ABC) algorithm to escape from the local optimum 
effectively. Moreover, the tournament selection strategy in 
onlooker bee phase is employed to increase the ability of the 
algorithm and avoid premature convergence. Experiments on six 
complex benchmark functions with high-dimension, the results 
further demonstrate that, the STOC-ABC not only accelerates 
the convergence rate and improves solution precision, but also 
provides excellent performance in dealing with complex high-
dimensional functions. 

Keywords—Artificial bee colony; chaotic opposition-based 
learning; Tent chaos search; self-adapting search; tournament 
selection strategy 

I.  INTRODUCTION 
Optimization algorithm has been applied in various fields, 

including function optimization, engineering design, 
operational research, information science and related areas. 
Biological-inspired optimization algorithms have been 
developed to be successful in tackling increasingly complex 
real world optimization problems in recent decades, such as 
genetic algorithm (GA) inspired by the Darwinian law of 
survival of the fittest [1], particle swarm optimization (PSO) 
inspired by the social behavior of bird flocking or fish 
schooling [2], ant colony optimization (ACO) inspired by the 
foraging behavior of ant colonies [3], and artificial bee colony 
(ABC) algorithm inspired by the foraging behavior of honey 
bee swarm [4], and so on. Numerical comparisons 
demonstrated that the performance of the ABC algorithm is 
competitive to other population-based algorithms with the 
advantage of employing fewer control parameters [5-7]. Due to 
its simplicity and ease of implementation, the ABC algorithm 
has captured much attention and has been applied to solve 
many practical optimization problems [8-10]. 

However, similar to other evolutionary algorithms, the 
standard ABC algorithm also faces up to some challenging 

problems. For example, the convergence speed of the ABC 
algorithm is typically slower than those of the representative 
population-based algorithms when dealing with the unimodal 
problems [7], because it cannot use the adequate information to 
determine the most promising search direction. What is more, 
the ABC algorithm can also easily get trapped in the local 
optima when solving complex multimodal problems [7], the 
reason is there is still the insufficiency in ABC regarding the 
solution search equation, which is used to generate new 
candidate solution based on the information of previous 
solutions, is good at exploration but poor at exploitation. 

Therefore, accelerating convergence speed and avoiding the 
local optima have become two most important and appealing 
goals in the ABC research. A number of variant ABC 
algorithms have, hence, been proposed to achieve these goals 
[11-16]. Zhang et al. [11] used the ABC as a data mining 
technique or clustering data, and compared it with other 
clustering methods on different data sets. Akay and Karaboga 
[12] proposed a modified artificial bee colony algorithm for 
real parameter optimization. Karaboga and Akay [13] proposed 
a modified artificial bee colony algorithm for constrained 
optimization problems. Alatas [14] proposed an ABC model 
that uses chaotic maps for parameter adaptation so as to 
improve the convergence characteristics and prevent the ABC 
from getting stuck in local minimums. An application of 
chaotic bee colony approach to air vehicle path planning was 
presented in [15]. Gao and Liu [16] modified the search 
equation of the basic ABC by using chaotic systems and 
opposition-based learning methods. 

The existing chaos optimization algorithms were almost 
based on Logistic map. However, the probability density 
function of chaotic sequences for Logistic map is a Chebyshev-
type function, which may affect the global searching capacity 
and computational efficiency of chaos optimization algorithm. 
Comparing with Logistic map, chaotic sequences produced by 
Tent map behave with global ergodicity and uniform, which 
are insensitive to initial value. Therefore, in this study, a novel 
self-adaptive chaotic artificial bee colony algorithm based on 
Tent map (STOC-ABC) is proposed to accelerate convergence 
speed and escape from the local optima of ABC. In STOC-
ABC, a novel population initialization method is presented, 
which employs the Tent Chaos map and the opposition-based 
learning method to generate initial population, and increase the 
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population diversity. The self-adaptive Tent chaotic searching 
is implemented at the zones nearby individual optimum 
solution bestX . The STOC-ABC algorithm, combining quick 
optimization property of ABC in multi-dimension space and 
global ergodicity of chaotic searching, can greatly improve the 
optimization capability and prevent the ABC plunging into the 
local minima. Result comparison of the algorithm with others 
on six benchmark functions confirms its efficiency. The results 
show that the STOC-ABC algorithm outperforms the other 
algorithms in terms of population diversity, robustness, and 
convergence speed.  

The rest of the paper is organized as follows. Section II 
describes the ABC algorithm. The improved ABC algorithm 
called STOC-ABC algorithm is presented and analyzed in 
Section III. In Section IV, STOC-ABC is tested on six 
benchmark functions compared with several other algorithms, 
and the experimental results are presented and discussed. 
Section V presents the conclusions and the future work. 

II. ARTIFICIAL BEE COLONY ALGORITHM 
ABC algorithm was applied to multidimensional and 

multimodal function optimization in [4, 5]. The swarm is 
divided into employed bees, scouts and onlookers. In the 
initialization phase, the algorithm generates a group of food 
sources corresponding to the solutions in the search space. 

The food sources are produced randomly within the range 
of the boundaries of the variables. 

)( minmaxmin
, jjjji xxRxx −+=                                              (1) 

where SNi ,,2,1 "= , Dj ,,2,1 "= . SN is the number of food 
sources and equals to half of the colony size. D is the 
dimension of the problem, representing the number of 
parameters to be optimized. min

jx and max
jx  are lower and 

upper bounds of the jth  parameter, respectively. The fitness of 
food sources will be evaluated. Additionally, counters which 
store the numbers of trials of each bee are set to 0 in this phase. 

In the employed bees’ phase, a number of employed bees, 
set as the number of the food sources and half the colony size, 
are used to find new food sources using (2) 

)( ,,,,, jkjijijiji xxxv −Φ+=                                             (2) 

where SNi ,,2,1 "= , and j is a randomly selected number in 
],1[ D , D  is the number of dimensions. ji,Φ  is a random 

number uniformly distributed in the range ]1,1[− . k  is the 
index of a randomly chosen solution, where ik ≠ . Both iV and 

iX  are then compared against each other and the employed 
bee exploits the better food source. 

Onlooker bees next choose a random food source 
according to the probability given in (3)  
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where )(tfiti is the fitness of the ith  food source. Then, each 

onlooker bee tries to find a better food source around the 
selected one using (1). 

If a food source cannot be improved for a predetermined 
number of cycles, referred to as Limit , this food source is 
abandoned. The employed bee that was exploiting this food 
source becomes a scout that looks for a new food source by 
randomly searching the problem domain. 

III. IMPROVED CHAOTIC ARTIFICIAL BEE COLONY 

A. Tent Chaos Map 
Similar to other evolutionary algorithms, artificial bee 

colony still has premature convergence phenomenon. Chaos 
phenomenon widely exists in nonlinear systems, which is a 
deterministic, random-like process, dynamical system. 
Moreover, it has a very sensitive dependence upon its initial 
condition and parameter [17]. Therefore, chaotic search 
strategy has been applied in the ABC algorithm to improve the 
ability to search global optimal solution [14, 15]. The invariant 
density of iterates is the uniform distribution function in the 
interval ]1,0[ , the Tent map shows outstanding advantages and 
higher iterative speed than the Logistic map [18]. In this study, 
the Tent-map is used in chaos optimization to generate the 
chaotic series. Tent map is defined as follows: 
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where tcx is Tent chaotic vector, and }8.0,6.0,4.0,2.0{∉tcx . 

B. Chaotic Opposition-based Learning Initialization 
Population initialization is a crucial task in evolutionary 

algorithms because it can affect the convergence speed and the 
quality of the final solution. If no information about the 
solution is available, then random initialization is then most 
commonly used method to generate initial population. Owing 
to the randomness and sensitivity dependence on the initial 
conditions of chaotic maps, the chaotic maps have been used 
to initialize the population so that the search space information 
can be extracted to increase the population diversity [14]. At 
the same time, according to [19], replacing the random 
initialization with the opposition-based population 
initialization can get better initial solutions and accelerate 
convergence speed. So this paper proposes a novel 
initialization approach which employs the Tent chaotic map 
and the opposition-based learning method to generate initial 
population. The chaotic opposition-based learning population 
initialization is described as algorithm 1.  

Algorithm 1 A novel initialization method 
1 Set the maximum number of chaotic iteration maxC , the 
population scale SN . 

2 for i=1: SN  

3      for j=1: D  

4            Randomly generate initialize variables )1,0(,0 ∈jcx  
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except 0.2, 0.4, 0.6, and 0.8; 

5            for k=1: maxC  

6                   if 2/1,1 <=− jkcx  

7                       jkjk cxcx ,1, 2 −=  

8                    else 

9                       )1(2 ,1, jkjk cxcx −−=  

10                  end 

11           end 

12          )( minmax
,

min
, jjjkjji xxcxxx -×+=  

13      end 

14 end 

15 for i=1: SN  

16      for j=1: D  

17           jijjji xxxox ,
maxmin

, -+=  

18     end 

19 end 

20 Selecting SN fittest individuals from set the 
SN
i

SN
i oxx 11 }{}{ == ∪ as initial population. 

C. Self-adaptive Tent Chaos Search 
The Tent chaotic search is aimed to utilize the Tent map to 

explore a better solution near the bestX . Tent chaotic local 
search of the STOC-ABC algorithm increases the ability to 
avoid local optima, and reduces the computation time. The 
detailed procedure of chaotic local search is described as 
algorithm 2. 

Algorithm 2 Self-adaptive Tent Chaos Search 

Step 1: Find the best solution named ),,( ,1, Dkkbest xxX "= , 
and calculate the fitness of bestX . 

Step 2: Set the iteration 0=Count  and generate the initial 
chaotic vector distribute in (0, 1) using (5). 

DjSNkxxxxcx jjjjkjk ,,1,,1)/()( minmaxmin
,

0
, "" ==−= ；；-  (5) 

Step 3: Calculate chaotic variables ),,2,1( max, Cmcxm
jk "=  

for next iteration using (4) except 0.2, 0.4, 0.6, and 0.8, where 
maxC is maximum chaotic search number. 

Step 4: Convert the chaotic variables m
jkcx ,  to the decision 

variables and generate new solution kV  using (6) 
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Step 5: Calculate the fitness of kV  and compare it to 
the bestX , if the fitness of kV  is better than the fitness of bestX , 
the solution should be selected as the new bestX . 

Step 6: 1+= CountCount , if the maximum iteration cycle is 
not reached yet, then go to step 3. Otherwise, chaotic search is 
completed. 

D. Tournament Selection 

The proportional selection in ABC algorithm requires the 
fitness function greater than zero. However, tournament 
selection [20] is different, it’s a selection process based on 
local competition which only refers to the relative value of 
individuals. In this paper, we select two individuals from the 
population and compare their fitness values, then assign one 
score to a better individual of the two, repeat such process and 
then the individual with the highest values wins the heaviest 
weight.  

This method of selection offers more chances for high-
fitness individuals to survive. Meanwhile, this method avoids 
from the influence of the super individuals since it only 
standardizes relative value of fitness which is not in proportion 
to the size of fitness. To a certain extent, it also avoids from 
premature convergence and stagnation. Selection probability 
of fitness is as follow: 
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where ic  is the score of the ith  individual. 

E. Main Procedure of the STOC-ABC 
In this section, we mainly focus on the procedure of 

proposed the STOC-ABC algorithm. The detailed procedure 
of the STOC-ABC algorithm is given as algorithm 3. 

Algorithm 3 STOC-ABC 

Step 1: Initial the food sources and computation conditions 
include population of bee colony N , number of employed 
bees )2/(NSN = , upper and lower boundaries of every 
decision variable, maximum iteration maxG , Limit and chaotic 
local search iteration number maxC . 

Step 2: Set iteration 0=iter , generate SN vectors iX  with 
D  dimensions as food sources according to algorithm 1. 

Step3：Sent SN  employed bees to food sources. Initialize 
the flag vector 0)( =itrial , which is recorded the cycle number 
of a food source. 

Step 4:  Produce new solutions iV  using employed bees by 
(2), and calculate the fitness value )( iVfit . 

Step 5: If )()( ii XfitVfit > , then ii VX = , 0)( =itrial ; 
Else iX is maintained, 1)()( += itrialitrial . 

Step 6: Calculate the probability values iP of food sources 
by applying tournament selection using (7). 
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Step 7: Onlooker bees choose the food sources by 
probabilities iP  until all of them have a corresponding food 
source, and produce new solutions iV . Calculate the fitness 
value )( iVfit . 

Step 8: If )()( ii XfitVfit > ， then ii VX = ， 0)( =itrial ; 
Else iX is maintained， 1)()( += itrialitrial 。 

Step 9: If Limititrial >)( , then there is an abandoned 
solution for the scout then replace it with a new food source 

iV ,which will be reinitialized by carrying out self-adaptive 
Tent chaos search of algorithm 2. 

Step 10: Memorize the best solution found so far. 

Step 11: Update 1+= iteriter . If the maximum iteration 

cycle is not reached yet, then go to step 4. Otherwise, return 
best solution. 

IV. EXPERIMENT AND RESULTS ANALYSIS 
In order to estimate the performance and analyze the 

exploration and exploitation abilities of the methods, we used 6 
well-known benchmark functions taken from [4-7], shown in 
Table I. These functions contain two unimodal (containing only 
one optimum) functions, four multimodal (containing many 
local optima, but only one global optimum) functions. Well-
defined benchmark functions which are based on mathematical 
functions can be used as objective functions to test and 
evaluate the performance of optimization methods. The nature, 
complexity and other properties of these functions can be easily 
obtained from their definitions. The difficulty levels of most 
benchmark functions are adjustable by setting their parameters. 

 
TABLE I. THE BENCHMARK FUNCTIONS USED IN THE EXPERIMENTS 

Function  Formulation and range Global minimum Dimensions Property 

Sphere ]100,100[,

1

2)(1 -∈∑ ix
D

i
ixXf

=

=  0)(1,0 == Xfix  50=D  Unimodal

Rosenbrock ]30,30[,
1

1

)2)1(2)2
1(100()(2 -∈

-
--∑ ix

D

i
ixixixXf

=

++=  0)(2,1 == Xfix  50=D  Unimodal

Rastrigin ]12.5,12.5[,

1

))10)2cos(102(100()(3 -∈-∑ ix
D

i
ixixXf

=

+= π  0)(3,0 == Xfix  50=D  multimodal

Griewank ]600,600[,1

1

)cos(
1

2
4000

1)(4 -∈-∑ ix
D

i
i

xD

iixXf i +

=
=
Π=  0)(4,0 == Xfix  50=D  multimodal

Ackley ]32,3[),20

1

)2cos(1exp()

1

212.0exp(20)(5 2-∈ixe
D

i
ix

n

D

i
ix

n
Xf ++

=

−

=

−−= ∑∑ π 0)(5,0 == Xfix  50=D  multimodal

Schwefel ]500,500[,))sin(()(
1

6 -∈∑ i

D

i
ii xxxXf

=

−=  DXfix 9829.418)(6,9687.420 −==  50=D  multimodal

 

A. Parameters Settings 
In order to confirm the effectiveness of the STOC-ABC 

algorithm, ABC and ABC based on Logistic chaos algorithm 
(CABC) have been applied to resolve functions optimization 
problem. All ABC was initialized in regions that include the 
global optimum for a fair evaluation, which is shown as 
follows: 
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where )(tfiti is the fitness value of the ith  food source, 
and )(tf i is the objective function value specific for the 
optimization problem. 

The population size of all algorithms is set to 100, the 
number of food sources, employed bees and onlooker bees is 
half of the population size and the number of scout bees is 
selected as one. Limit time of food source cannot be improved 

is 100; maximum iteration cycle number maxG is 3000; chaotic 
local search iteration number maxC is 300. All algorithms are 
coded in Matlab 2012a using computer with Intel(R) Core (TM) 
i3-3120M 2.5 GHz CPU, 2 GB RAM. The operating system of 
the computer is Windows 7 ultimate. 

B. Performance of Chaotic Opposition-based Learning 
In order to estimate the performance of chaotic opposition-

based learning initialization, the random initialization and 
opposition-based learning initialization have been tested on 
the six functions in terms of the fitness value and the 
population diversity. In this paper, the population diversity is a 
measurement of the cover degree, which is defined as follows: 

∑ ∑
= =

−=
SN
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D

j
jji xx

DSN
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1 1

2
, )(11                                 (9) 

where SN  denotes the number of food sources, which is equal 
to the number of employed bees or onlooker bees. D is the 
number of variables or the dimension of the problem, and x  is 
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the center position of the colony. 

All functions were tested with 50 dimensions and all 
algorithms were run 30 times. Because all test function are 
minimization problems, the smaller the fitness, the better it is, 
while the population diversity is the opposite. The results are 
shown in Table II. 

From Table II it can be seen that the fitness value and the 

population diversity of chaotic opposition-based learning 
initialization are better than these of the two other 
initialization method for all the test functions. In a word, by 
combining the advantages of Tent chaotic map and 
opposition-based learning method, the chaotic opposition-
based learning initialization can increase the population 
diversity and obtain good initial solutions. 

 
TABLE II. PERFORMANCE COMPARISON OF POPULATION INITIALIZATION METHOD 

Method 
Fun 

Random initialization Opposition-based initialization Chaotic opposition-based initialization 

Fitness Diversity Fitness Diversity Fitness Diversity 

f1 1.2947e+05 58.8765 1.1870e+05 65.5079 8.0050e+04 118.4524 

f2 8.6994e+08 17.3647 6.7075e+08 17.3808 3.7083e+08 35.2190 

f3 750.5709 2.98227 886.7954 3.44844 715.3098 5.76384 

f4 2.1049e+03 344.6124 1.7049e+03 349.4727 1.0121e+03 681.1092 

f5 21.1516 18.7528 21.0568 19.5132 20.4393 39.1969 

f6 -3.5631e+03 289.4924 -3.1012e+03 290.7989 -2.8151e+03 617.5043 

 

C. Performance of STOC-ABC 
In order to verify the effectiveness of the STOC-ABC 

algorithm, ABC and ABC based on Logistic chaos (CABC) 
algorithms have been applied to minimize the six benchmark 
functions. All functions were tested with 50 dimensions. For 
each function, all the algorithms were run 30 times. The best, 

worst, mean and standard deviations of function fitness values 
were obtained by implementing STOC-ABC, ABC, and CABC 
algorithms, respectively. The comparison results are shown in 
Table III, in which the results of winner algorithms are marked 
as bold. The convergence processes of the different ABCs on 
test functions are shown in Fig.1. 

 
TABLE III.  OPTIMIZATION RESULTS COMPARISON OF BENCHMARK FUNCTIONS 

Function Algorithm Best Worst Mean Std 

Sphere ABC 1.16921e-15 2.30472e-15 1.59341e-15 2.43195e-16 
 CABC 9.68606e-16 1.86614e-15 1.50491e-15 2.09925e-16 
 STOC-ABC 9.56249e-20 9.76645e-18 6.17839e-19 7.92835e-31 

Rosenbrock ABC 3.48953e-02 2.44179e+00 4.98511e-01 5.92527e-01 
 CABC 4.83917e-03 7.16931e-01 1.69646e-01 2.00503e-01 
 STOC-ABC 2.97214e-06 8.87529e-02 2.83241e-04 1.22748e-15  

Rastrigin ABC 1.13687e-13 9.48717e-11 7.40859e-12 2.04839e-11 
 CABC 0 2.27374e-13 7.57912e-14 4.56052e-14 
 STOC-ABC 0 1.52761e-15 3.28702e-17 1.62783e-26 

Griewank ABC 9.99201e-16 8.53762e-14 1.19978e-14 2.07400e-14 
 CABC 0 5.55112e-16 1.25825e-16 1.22778e-16 
 STOC-ABC 0 1.66454e-16 1.40346e-18 1.32227e-27 

Ackley ABC 3.00249e-11 1.94881e-10 7.55055e-11 3.34588e-11 
 CABC 2.29594e-12 1.24105e-11 7.04130e-12 2.66576e-12 
 STOC-ABC 2.99961e-15 2.99961e-15 2.99961e-15 0 

Schwefel ABC -2.02027e+04 -2.07123e+04 -2.08738e+04 7.28559e+01 
 CABC -2.09491e+04 -2.09491e+04 -2.09491e+04 1.88551e-11 
 STOC-ABC -2.09491e+04 -2.09487e+04 -2.09491e+04 9.90947e-08 
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Fig.1. Convergence process of the different ABCs on test functions 
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As it is seen in Table III, the CABC and STOC-ABC have 
equal best fitness values on Rastrigin, Griewank function. The 

performance of CABC is slightly better than that of STOC-
ABC on Schwefel function, the reason is that the minimum 
value of Schwefel is at the boundaries position. And, the 
boundary number is many and the middle number is small, 
which are produced by Logistic chaos sequence, however, 
Tent chaos sequence is uniformly distributed. For the rest of 
the benchmark functions, the performance of STOC-ABC is 
better than the CABC. For all functions, the results of the 
STOC-ABC and CABC are better than those of the ABC. 
According to Fig.1, the convergence performance of the 
STOC-ABC is better than the CABC and ABC, except the 
CABC is slightly better than the STOC-ABC on Schwefel 
function. 

In order to further confirm the effectiveness of STOC-
ABC, the performances of the STOC-ABC algorithm and the 
CABC algorithm were tested on Sphere, Rosenbrock, 
Rastrigin and Griewank functions with 10, 30, 60, 100 and 
200 dimensions. The maximum iteration number used for 
termination condition for the algorithms is tuned according to 
the problem dimension and 100 iterations are executed for 
each dimension. Other parameters settings of the algorithms 
are as mentioned earlier. Each of experiments was repeated 
run 30 times, and the mean values and standard deviations are 
given in Table IV, which the best results were marked as bold. 

 
TABLE IV． COMPARISONS OF STOC-ABC AND CABC ON SPHERE, ROSENBROCK, RASTRIGIN AND GRIEWANK FUNCTIONS 

Function Algorithm performance 
Dimensions     

10 30 60 100 200 

Sphere CABC Mean 7.90706e-17 4.7927e-16 1.20774e-15 2.15732e-15 4.64775e-15 

  Std 1.57383e-17 6.81776e-17 1.26539e-16 1.45943e-16 2.82456e-16 

 STOC-ABC Mean 5.25350e-22 5.11746e-19 6.43667e-19 2.11799e-17  1.04723e-16  

  Std 8.67163e-32 9.91044e-31 8.94635e-31 4.75701e-30 1.18925e-29 

Rosenbrock CABC Mean 7.90276e-02 2.41492e-01 1.45429e-01 2.64516e-01 3.05366e-01 

  Std 1.55123e-02 3.57534e-01 2.20976e-01 2.38743e-01 3.41979e-01 

 STOC-ABC Mean 1.85723e-02 2.84572e-02 8.69321e-02 1.06451e-01 3.15635e-01 

  Std 1.08257e-02 2.96273e-02 3.75486e-02 9.53723e-02 3.67654e-01 

Rastrigin CABC Mean 0 0 7.57912e-15 7.57912e-15 7.57912e-15 

  Std 0 0 2.88433e-14 2.88433e-14 2.88433e-14 

 STOC-ABC Mean 0 0 5.28702e-17
  3.53328e-16 1.45276e-15 

  Std 0 0 6.62783e-25 5.57216e-19 2.27374e-15 

Griewank CABC Mean 1.80778e-05 5.18104e-17 1.51730e-16 3.10862e-16 1.09542e-15 

  Std 3.82565e-06 1.08047e-16 1.85509e-16 3.47921e-16 4.12052e-16 

 STOC-ABC Mean 1.11022e-16 0 0 2.52332e-18
  

2.67335e-17
  

  Std 0 0 0 1.57327e-26 1.22213e-22 

 
As shown in Table IV, the STOC-ABC and CABC have 

equal performance on Rastrigin function with 10 and 30 
dimensions and the CABC is better than the STOC-ABC on 
the 200-dimensional Rosenbrock function. For the rest of 
functions and dimensionalities, the STOC-ABC is superior to 
the CABC. In addition, with the dimension increasing, the 
performances of the two algorithms are decreased, but the 

STOC-ABC shows good performance although 
dimensionalities of the functions are increased.  

Summarizing the earlier statements, the ability of STOC-
ABC is that it can prevent bees from falling into the local 
minimum, reduce evolution process significantly and 
convergence faster, compute with more efficiency, and 
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improve the searching abilities of algorithm. 

V. CONCLUSION 
A novel chaotic artificial bee colony algorithm based on 

Tent map is proposed to enhance the population diversity, and 
prevent the ABC plunging into local solutions.  In the STOC-
ABC, by combining the advantages of the Tent chaotic map 
and the opposition-based learning method, the chaotic 
opposition-based learning initialization can increase the 
population diversity and obtain good initial solutions. The 
self-adaptive Tent chaotic search is applied to help the 
artificial bee colony (ABC) algorithm to escape from local 
optimum effectively. Moreover, the tournament selection 
strategy in onlooker bee phase is employed to increase the 
ability of the algorithm to avoid premature convergence. The 
simulation comparison results show that the STOC-ABC not 
only accelerates the convergence rate and improves solution 
precision, but also increases the population diversity and 
avoids premature convergence. 

For future work, the STOC-ABC will be performed for 
solving different real optimization problems and hybrid search 
strategies based on swarm-based methods such as the PSO, 
ABC, bacterial foraging optimization and fruit fly 
optimization.  
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